Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.

نویسندگان

  • Qin Cai
  • Meng-Juei Hsieh
  • Jun Wang
  • Ray Luo
چکیده

We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Abstract: Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently ...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation

A finite-element approach combined with an efficient iterative method have been used to provide a numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear equations arising from the FE discretization procedure by a node-by-node calculation. The performance of the proposed method is illustrated by applying it to the problem of two identical colloi...

متن کامل

Modeling of Transport through Submicron Semiconductor Structures: A Direct Solution of the Coupled Poisson-Boltzmann Equations

We report on a computational approach based on the self-consistent solution of the steady-state Boltzmann transport equation coupled with the Poisson equation for the study of inhomogeneous transport in deep submicron semiconductor structures. The nonlinear, coupled Poisson-Boltzmann system is solved numerically using finite difference and relaxation methods. We demonstrate our method by calcul...

متن کامل

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations

We present a solver for the Poisson-Boltzmann equation and demonstrate its applicability for biomolecular electrostatics computation. The solver uses a level set framework to represent sharp, complex interfaces in a simple and robust manner. It also uses non-graded, adaptive octree grids which, in comparison to uniform grids, drastically decrease memory usage and runtime without sacrificing acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2010